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The dynamical Lie algebraic approach developed by Alhassid and Levine combined with
intermediate picture is applied to the study of translational–vibrational energy transfer in the
collinear collision between an atom and an anharmonic oscillator. We find that the presence
of the anharmonic terms indeed has an effect on the vibrational probabilities of the oscillator.
The computed probabilities are in good agreement with those obtained using exact quantum
method. It is shown that the approach of dynamical Lie algebra combining with intermediate
picture is reasonable in the treating of atom–anharmonic oscillator scattering.
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1. Introduction

The study of translational–vibrational energy transfer in atom–molecule and
molecule–molecule collision has been the subject of theoretical investigations [1–12].
Alhassid and Levine have developed the dynamical Lie algebraic method [13], which,
at first, was used to the linearly driven harmonic oscillator. The dynamical Lie algebraic
method was recently used to describe a number of topics in both gas phase and gas–
surface scattering [14–17]. A much greater advantage, which is observed in the calcula-
tion, is that the evolution operator for a given Hamiltonian can be expressed analytically
in terms of the group parameters, which can be determined by solving coupled nonlinear
differential equations. The transition probability that contained main dynamical para-
meters may be given analytically. Thus, the method can provide more insight into the
relation between the potential function and the transition probability. Because of quite
small numerical effort required in the calculation, it is also possible to carry out extensive
parameter variation in an assumed potential function in order to fit calculations to exper-
iments. Application of the dynamical Lie algebraic mehtod to problems in inelastic and
reactive scattering has shown that it is well suited to the description of these phenomena.
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In this paper we focus our attention on the dynamical Lie algebraic approach com-
bining with intermediate picture and applying it to atom–diatom collisions. As known,
any problem of quantum mechanics essentially consists of a more or less complete and
more or less precise determination of the properties of the unitary operatorU(t, t0).
When one setsU(t, t0) = U(0)U ′, hereU(0)(t, t0) is approximate solution of the equa-
tion

ih̄
d

dt
U(t, t0) = HU(t, t0),

U ′ is an operator changing slowly as a function of time. The HamiltonianH is, thus,
the sum of two Hermitian operatorsH = H(0) +H ′, whereH ′ may be considered as a
small perturbation,H(0) is the Hamiltonian of the Schrödinger equation whose solution
is known, thenU ′ satisfies the equation

ih̄
d

dt
U ′ = H ′IU ′,

in which H ′I is deduced fromH ′ by the time-dependent unitary transformationH ′I =
U(0)+H ′U(0). In this way, it is then convenient to adopt a “picture” intermediate between
that of Schrödinger and of Heisenberg, intermediate picture [18]. When the collison en-
ergy is not high, it is reasonable to regard the diatomic molecule as a harmonic oscilla-
tor. But for higher collision energies the oscillator may be brought to a highly-excited
vibrational state, the harmonic oscillator model no longer holds, for this reason we will
consider the diatomic molecule as an anharmonic oscillator with cubic and quartic terms
present. The total Hamiltonian of the colliding system can be adequately approximated
by the linear combination of a finite number of simple operators and divided into two
partsH1 andH2, whereH1 is constituted by the operators which form a dynamical Lie
algebra and treated by using dynamical Lie algebraic approach. WhileH2 contains oper-
ators in which the order of parts of the operators is greater than two and cannot construct
a dynamical Lie algebra, thenH2 is dealt with in intermediate picture. As examples, the
collinear collision systems of H2 + He, H2+ H are explicitly treated using this method
to illustrate its general procedure.

2. Hamiltonian of the scattering system

The Hamiltonian of the isolated diatomic molecule, which is considered as an an-
harmonic oscillator, is expressed as

Han= P
2

2µ
+ 1

2
µω2Y 2+ k1Y

3+ k2Y
4, (1)

in whichµ is the reduced mass of diatomic molecule,k1, k2 are force constants.Y =
y − y0, y0 is the equilibrium position of vibrational coordinatey. P is momentum
operator corresponding to momentump, ω denotes the vibrational angular freqency of
diatomic molecule.
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For the collinear collision of a diatomic molecule with an atom, the interaction
potential in the semiclassical approximation is given by [1]

V = E(t)exp

(
γ

L
Y

)
, (2)

whereE(t) = E0sech2(v0t/(2L)), v0 the initial relative velocity,E0 = mv2
0/2 is the

initial kinetic energy,m is the reduced mass of the collison system,γ andL are potential
constants.

The total Hamiltonian of the scattering system is

H =Han+ V
= P

2

2µ
+ 1

2
µω2Y 2+ k1Y

3+ k2Y
4+ E(t)exp

(
γ

L
Y

)
. (3)

Making a Taylor series expansion of the fifth term in equation (3) with respect toY to
the fourth order we can transform equation (3) into

H = P
2

2µ
+ 1

2
µω2Y 2+ B0+ B1Y

2+ (k1+ B3)Y
3+ (k2+ B4)Y

4. (4)

where

B0 = E(t) = E0sech2
(
v0t

2L

)
, B1 = B0

(
γ

L

)
,

B2 = B0

(
γ

L

)2

, B3 = B0

(
γ

L

)3

, B4 = B0

(
γ

L

)4

.

LetH = H1+H2,

H1 = P
2

2µ
+ 1

2
µω2Y 2+ B1Y + B2Y

2+ B0, (5)

H2 = (k1+ B3)Y
3+ (k2+ B4)Y

4. (6)

In order to adopt dynamical Lie algebraic approach, it is convenient to make use of
particle number picture, the transformation formulas are

a+ = 1√
2

(√
µω

h̄
Y − i

√
1

µh̄ω
P

)
,

a= 1√
2

(√
µω

h̄
Y + i

√
1

µh̄ω
P

)
.

(7)

Substituting equation (7) into equations (5) and (6) we can obtain

H1=H0+ V ′, (8)

H0= h̄ω′
(
a+a + 1

2

)
, (9)
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V ′ =D1
(
a+ + a)+D2

(
a2 + a+2), (10)

H2=D3
(
a3+ 3a+a2 + 3a+2a + 3a + 3a+ + a+3

)
+D4

(
a4+ 4a+a3+ 6a+2a2 + 4a+3a + a+4+ 6a+2 + 6a2+ 12a+a + 3

)
,

(11)

where

D1 = B1

(
h̄

2µω

)1/2

, D2 = B2
h̄

2µω
,

D3 = (k1+ B3)

(
h̄

2µω

)3/2

, D4 = (k2+ B4)

(
h̄

2µω

)2

.

In deriving equations (8)–(11) we have neglected several constant terms (those
terms not containing operators) which make no contribution to dynamics. Hereω′ =
ω + 2D2/h̄, 2D2/h̄ denotes the revised term to angular frequencyω of harmonic oscil-
lator from the potentialV . It can be found from equation (11) that the order of most of
the operators is greater than two, thus, these operators in equation (11) cannot construct
a dynamical Lie algebra, we will treat them using intermediate picture in section 4.

To obtain the transition probability it is convenient to make a transformation to
the interaction picture where the free motion of the system has been seperated from the
motion of the total system [18]. In the interaction pictureV ′ can be transformed to

VI(t) = e(i/h̄)H0tV ′e−(i/h̄)H0t = v∗1a+ + v1a + v∗2a+2+ v2a
2, (12)

wherev1 = D1e−iω′ t , v2 = D2e
−i2ω′t . The dynamical algebra corresponding to equa-

tion (12) is a six-dimensional Lie algebrah6: I, a+, a, a+a, a+2, a2, where the order
of the algebra elements has been preordained and the commutation relations between the
algebra elements are[

a, a+
] = 1,

[
a, a+a

] = a, [
a+, a+a

] = −a+,[
a, a+2

] = 2a+,
[
a+, a2

] = −2a,
[
a+2, a+a

] = −2a+2,[
a2, a+a

] = 2a2,
[
a2, a+2

] = 2I + 4a+a.

(13)

3. Time evolution operator

The time evolution operatorU(t, t0), which is equivalent to the scattering wave
function, in the interaction picture is defined by [13]

UI(t, t0)= exp{T },
T =− i

h̄

(
u1I + u∗2a+ + u2a + u4a

+a + u∗3a+2 + u3a
2
)
,

(14)
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where the group parametersu1, u4 are real,u2, u3 are complex, they are determined by
the following equation [13]:

∂u
∂t
=
∑
j=0

Bj

j ! d
j (T )v, (15)

in whichBj (j = 0,1,2, . . .) are Bernoulli numbers andj is positive integer, the ma-
trix d is [10]

d = − i

h̄




0 u2 −u∗2 0 2u3 −2u∗3
0 u4 −2u∗3 −u∗2 2u2 0
0 2u3 −u4 u2 0 −2u∗2
0 0 0 0 4u3 −4u∗3
0 0 0 −2u∗3 2u4 0
0 0 0 −2u3 0 −2u4


 .

Matricesu andv are column matrices

u =




u1

u∗2
u2

u4

u∗3
u3



, v =




0
v∗1
v1

0
v∗2
v2



.

The first-order approximation to equation (15) is

∂u
∂t
�
{

1− 1

2
d
}

v (16)

with the initial condition

u|t=t0 = 0.

Solving equation (16) enables us to determine time evolution operatorU(t, t0).

4. Transition probability

The state| (t)〉 of the system at timet is obtained from the state| i〉 at t0 as∣∣ (t)〉 = U(t, t0)| i〉, (17)

where the time-dependent operatorU(t, t0) is a solution of

ih̄
dU(t, t0)

dt
= HU(t, t0), U(t0, t0) = Î . (18)

HereH is the Hamiltonian of the scattering system andÎ is the identity operator. In the
intermediate picture we write ∣∣ (t)〉 = U ′∣∣"(t)〉. (19)
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U ′ is called effective evolution operator.U ′ and|"(t)〉 satisfy the following equations
respectively [18]:

ih̄
dU ′(t, t0)

dt
= H ′U ′(t, t0), U ′(t0, t0) = Î , (20)

and

ih̄
d

dt

∣∣"(t)〉 = HI ∣∣"(t)〉, ∣∣"(t0)〉 = | i〉, (21)

in whichH ′ is an effective Hamiltonian, and

HI = U ′+
(
H −H ′)U ′ (22)

is the Hamiltonian of the system in the intermediate picture,+ stands for adjoint. To
solve equation (21) we should expand"(t) in a basis set{|χk〉}. In our calculations
{|χk〉} are set to be the basis functions of harmonic oscillator:∣∣"(t)〉 =∑

k

ck|χk〉. (23)

Expansion coefficients{ck} satisfy

ih̄
dc
dt
= HIc. (24)

The elements of matrixHI are

HI
ij = 〈χi |HI |χj 〉, (25)

and those of matrixc are{ck}, then matrixc may be expressed as

c =




c0

c1

c2
...

cn


 . (26)

To determine the coefficientsc0, c1, . . . , cn, we need to give out the expression of matrix
elementsHI

ij (i, j = 0,1,2, . . . , cn). Here,U ′ ≡ UI(t, t0) andH ′ ≡ H1, then from
equations (22) and (11) we obtain

HI =U+I (t, t0)(H −H1)UI (t, t0) = U+I (t, t0)H2UI(t, t0)

=A1a
4 + A2a

+4a + A3a
+3a + A4a

+a3 + A5a
+2a2 + A6a

3

+ A7a
+3 + A8a

+2a + A9a
+a2 + A10a

+a + A11a
+2

+ A12a
2+ A13a

+ + A14a + A15, (27)
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whereA1, A2, . . . , A15 are functions of group parameters, the expressions of them are
listed in table 1. Substituting equation (27) into equation (25), we have

HI
ij =A1

√
j (j − 1)(j − 2)(j − 3)δi,j−4 + A6

√
j (j − 1)(j − 2)δi,j−3

+
[
A4(j − 2)

√
j (j − 1)+ A12

√
j (j − 1)

]
δi,j−2 +

[
A9(j − 1)+ A14

]√
jδi,j−1

+ [A5j (j − 1)+ A10j + A15
]
δi,j + [A8j + A13]

√
j + 1δi,j+1

+ [A3j + A11]
√
(j + 1)(j + 2)δi,j+2 + A7

√
(j + 1)(j + 2)(j + 3)δi,j+3

+ A2

√
(j + 1)(j + 2)(j + 3)(j + 4)δi,j+4. (28)

The probability that the system will be in a given state (t) is given by [19]

Pi→f =
∣∣〈 f ∣∣ (t)〉∣∣2
= lim
t→+∞,t0→−∞

∣∣〈 f ∣∣ (t)〉∣∣2
= lim
t→+∞,t0→−∞

∣∣∣∣∑
j

cj (t)〈 f |UI(t, t0)|χj 〉
∣∣∣∣
2

= lim
t→te/2,t0→−te/2

∣∣∣∣∑
j

cj (t)〈 f |UI(t, t0)|χj 〉
∣∣∣∣
2

=
∣∣∣∣∑
j

cj (t)〈 f |UI
(
te

2
,− te

2

)
|χj 〉

∣∣∣∣
2

, (29)

wherete denotes the effective collision time [20], which indicates that

lim
t→+∞,t0→−∞

VI(t) = lim
t→te,t0→−te

VI = 0. (30)

Under the first-order approximation of group parameter and substituting equation (14)
into equation (29) we finally obtain the expression of transition probability

Pi→f =
∣∣∣∣∑
j=0

cj

{
δf,j − i

h̄

[
(u1+ u4)δf,j + u∗2

√
j + 1δf,j+1+ u2

√
jδf,j−1

+ u∗3
√
(j + 1)(j + 2)δf,j+2+ u3

√
j (j − 1)δf,j−2

]}∣∣∣∣
2

,

(31)

wheret and t0 in the group parametersuj = uj (t, t0) (j = 1,2,3,4) are replaced by
te/2 and−te/2, respectively.
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5. Results and discussion

As an application of the expression of transition probability, equation (31), we
will calculate the vibrational transition probabilities of the collinear collision systems
H2 + He, H2 + H. The total collision energyEtot in the initial state|i〉 for the collision
system is defined by

Etot = E0+ 1

2
(i + 1)h̄ω, (32)

hence, the initial kinetic energy is

E0 = Etot− 1

2
(i + 1)h̄ω. (33)

Collision time is set to be effective collision timete (te ≈ 10−13 s) [20], initial time
t0 = −te/2. The dynamical parameters used in the calculations are listed in ta-
ble 2. Similar to [4], for every scattering system we calculated the probabilities of the
following transition: 0→ 1,0→ 2, . . . ,0→ 7; 1→ 2,1→ 3, . . . ,1→ 7; 2 → 3,
2 → 4, . . . ,2 → 7; . . . ; 5 → 6, 5 → 7. Comparisons with the exact quantum-
mechanical calculations [4] for a Harmonic-Exponential potential (HOEXP) and a
Morse-Exponential potential (MOEXP) are displayed in tables 3–9 and figures 1–14.
In tables 3–9, corresponding to every energy valueE (E = Etot/(

1
2h̄ω)) the upper entry

is HOEXP result, the middle entry MOEXP result, and the lower entry dynamical Lie
algebraic result. Values in parentheses denote×10−n. From tables 3–9 and figures 1–14
we can see that our calculation results and the exact quantum mechanics calculation re-
sults exhibit similar tendency, and the presence of the anharmonic terms indeed has an
effect on the vibrational probabilities of the oscillator. It is also found that the smaller
the reduced mass of the scattering system, the larger is the effect of anharmonic terms
on the transition probabilities. On the other hand, the bigger the quantum number differ-
ence between two transition states, the larger is the effect of the anharmonicity. Insofar
as the transitions 0→ 1, 1→ 2, 2→ 3, 3→ 4, 4→ 5 of H2 + H scattering system
are concerned, the dynamical Lie algebraic results are similar to HOEXP and MOEXP
results in that the probability at the energy 16 is larger than that at the energy 12. This
fact reveals that the value of probability corresponding to energy 16 exceeds the first
maximum value of transition probability. This is because the reduced mass of H2 + H
is smaller, so that for the transitions 0→ 1, 1→ 2, 2→ 3, 3→ 4, 4→ 5, the first
maximum value of transition probability is smaller. As for system H2+He, although in
the HOEXP calculation the probabilities corresponding to transitions 0→ 1 and 1→ 2
show the phenomenon mentioned above, it is not the case in the MOEXP and dynamical
Lie algebraic calculations. In addition, we note that for the two systems, the effect of
anharmonicity on the transition probability increases gradually with the increasing of
energy. Further examination indicates that our calculations are closer to the MOEXP
results than those of HOEXP. This may be accounted for by the fact that the anharmonic
oscillator model is closer to the Morse oscillator model. On the whole, the approach of
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Table 1
Expansion coefficients in equation (27).

D3 =
{[
k1+ E0sech2

(
v0t
2L

)](
γ
L

)3}(
h̄

2µω

)3/2

D4 =
{[
k2+ E0sech2

(
v0t
2L

)](
γ
L

)4}(
h̄

2µω

)2

A1 = D4[1+ i
h̄
(8u3 − 4u4)]

A2 = D4[1+ i
h̄
(4u4 − 8u∗3)]

A3 = 4D4[1+ i
h̄
(2u3 + 2u4 − 6u∗3)]

A4 = 4D4[1+ i
h̄
(6u3 − 2u4 − 2u∗3)]

A5 = 6D4[1+ i
h̄
(4u3 − 4u∗3)]

A6 = 4D4
i
h̄
(u2− u∗2)+D3[1+ i

h̄
(6u3 − 3u4)]

A7 = 4D4
i
h̄
(u2− u∗2)+D3[1+ i

h̄
(3u4 − 6u∗3)]

A8 = 4D4
i
h̄
(3u2− 3u∗2)+ 3D3[1+ i

h̄
(u4− 4u∗3 + 2u3)]

A9 = 4D4
i
h̄
(3u2− 3u∗2)+ 3D3[1+ i

h̄
(u4− 4u∗3 + 2u3)]

A10= 24D4
i
h̄
(u3 − u∗3)+ 6D3

i
h̄
(u2 − u∗2)+ 12D4[1+ i

h̄
(u3− u∗3)]

A11= 6D4[1+ i
h̄
(2u3 + 2u4 − 6u∗3)] + 3D3

i
h̄
(3u2 − 3u∗2)

A12= 6D4[1+ i
h̄
(6u3 − 2u4 − 2u∗3)] + 3D3

i
h̄
(3u2 − 3u∗2)

A13= 6D3
i
h̄
(u3 − 2u∗3)+ 12D4

i
h̄
(u2− u∗2)+ 3D3

i
h̄
u4+ 3D3

A14= 6D3
i
h̄ (2u3 − u∗3)+ 12D4

i
h̄ (u2− u∗2)− 3D3

i
h̄ u4+ 3D3

A15= 12D4(u3 − u∗3)+ 3D3
i
h̄ (u2 − u∗2)

Table 2
The values (SI) of the dynamical parameters used in the

present calculations.

Dynamic parameter H2+ He H2 + H

ω 8.29× 1014 8.29× 1014

µ 8.36× 10−28 8.36× 10−28

m 2.23× 10−27 1.11× 10−27

L 2.0× 10−11 2.0× 10−11

γ 0.5 0.5
k1 −5.57× 1012 −5.57× 1012

k2 6.31× 1022 6.31× 1022

dynamical Lie algebra combining with intermediate picture is reasonable in the treating
of atom–anharmonic oscillator scattering.
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Table 3
Comparison of the dynamical Lie algebraic calculation with
those of HOEXP and MOEXP calculation [4] for the scat-

tering system H2 + He.

E 0→ 4 0→ 5 0→ 6 0→ 7

6

2.71(−9)

8

1.01(−8)

10 4.26(−8)
1.95(−8)
2.83(−8) 3.86(−9)

12 3.65(−5) 5.45(−9)
1.48(−6) 4.95(−9)
6.11(−6) 6.19(−9) 4.44(−10) 1.00(−10)

16 1.06(−2) 3.31(−4)
1.61(−4) 7.44(−6)
3.02(−4) 9.82(−6) 3.67(−7) 5.39(−8)

Table 4
Comparison of the dynamical Lie algebraic calculation with those of HOEXP and MOEXP

calculation [4] for the scattering system H2+ He.

E 1→ 4 1→ 5 1→ 6 1→ 7 2→ 5 2→ 6 2→ 7

6

3.55(−8)

8

1.17(−7)

10 1.80(−6) 2.95(−10)
3.12(−6) 3.65(−8)
4.47(−6) 3.46(−9) 8.27(−8)

12 7.69(−4) 1.84(−7) 4.11(−6)
1.38(−4) 5.01(−7) 4.56(−5)
3.52(−3) 5.52(−6) 7.41(−8) 3.51(−5) 5.66(−7)

16 7.32(−2) 4.04(−3) 2.58(−2)
5.16(−3) 3.24(−4) 5.77(−3)
1.06(−2) 6.76(−4) 4.53(−5) 1.34(−6) 6.35(−3) 7.48(−4) 3.93(−6)
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Table 5
Comparison of the dynamical Lie algebraic calculation
with those of HOEXP and MOEXP calculation [4] for

the scattering system H2+ He.

E 3→ 4 3→ 5 3→ 6 3→ 7

6

1.72(−6)

8 3.51(−6)
3.51(−6)
4.13(−5)

10 2.76(−3)
1.92(−2) 4.47(−6)
9.86(−3) 8.36(−6)

12 9.59(−2) 9.28(−5)
5.64(−3) 1.98(−3)
1.23(−2) 4.47(−3) 2.53(−6)

16 3.04(−1) 1.09(−1)
6.39(−2) 5.76(−2)
8.17(−2) 8.31(−2) 1.24(−2) 4.38(−4)

Table 6
Comparison of the dynamical Lie algebraic calculation with those
of HOEXP and MOEXP calculation [4] for the scattering system

H2+ He.

E 4→ 5 4→ 6 4→ 7 5→ 6 5→ 7

8

7.37(−7) 3.62(−7)

10
9.12(−4)
5.69(−4) 6.91(−7) 9.13(−4) 7.02(−7)

12 3.40(−3)
5.97(−2) 1.30(−2)
9.29(−3) 3.78(−4) 6.63(−6) 2.48(−2) 6.34(−4)

16 3.12(−1) 1.27(−1)
3.17(−1) 2.84(−1)
4.08(−1) 6.18(−2) 2.77(−3) 3.22(−1) 2.72(−2)
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Table 7
Comparison of the dynamical Lie algebraic calculation with those of HOEXP and

MOEXP calculation [4] for the scattering system H2 +H.

E 0→ 4 0→ 5 0→ 6 1→ 4 1→ 5 1→ 6

8
8.02(−9) 3.73(−7)
1.77(−8) 5.44(−7)

10 2.80(−5) 3.76(−4)
1.03(−4) 1.52(−7) 2.32(−3) 5.00(−6)
8.63(−5) 9.58(−8) 1.53(−4) 3.84(−6)

12 3.51(−3) 7.86(−6) 2.49(−2) 9.47(−5)
2.57(−3) 8.00(−5) 3.22(−2) 1.58(−3)
4.23(−2) 1.20(−4) 4.68(−6) 3.96(−2) 8.65(−4) 3.77(−6)

16 1.54(−1) 2.01(−2) 2.67(−1) 8.49(−2)
5.18(−2) 1.02(−2) 2.02(−1) 7.34(−2)
9.71(−2) 9.64(−3) 7.75(−4) 3.19(−1) 1.09(−1) 1.45(−3)

Table 8
Comparison of the dynamical Lie algebraic calculation with those of HOEXP and MOEXP

calculation [4] for the scattering system H2+ H.

E 2→ 5 2→ 6 2→ 6 3→ 4 3→ 5 3→ 6 3→ 7

6

3.49(−6)

8 5.25(−4)
5.25(−4)
6.32(−4) 5.66(−7)

10 3.40(−2)
9.59(−5) 1.89(−1) 1.52(−3)
3.56(−5) 2.33(−7) 8.58(−8) 8.18(−2) 2.31(−3) 4.34(−6)

12 7.20(−4) 2.85(−1) 4.90(−3)
1.53(−2) 3.49(−1) 9.04(−2)
1.13(−3) 6.12(−4) 1.02(−5) 3.22(−1) 6.72(−2) 7.50(−4) 3.63(−5)

16 1.83(−1) 1.75(−3) 2.42(−1)
1.95(−1) 2.06(−3) 1.73(−1)
2.00(−1) 2.44(−2) 6.76(−3) 4.53(−2) 1.07(−1) 8.49(−2) 2.57(−3)
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Table 9
Comparison of the dynamical Lie algebraic calculation with those of HOEXP and

MOEXP calculation [4] for the scattering system H2 +H.

E 4→ 5 4→ 6 4→ 7 5→ 6 5→ 7 6→ 7

8

7.27(−3) 5.34(−6) 9.90(−4) 4.52(−6) 7.44(−5)

10
2.53(−2)
1.88(−2) 3.71(−4) 4.58(−6) 5.77(−2) 2.13(−3) 6.32(−3)

12 3.97(−2)
3.18(−1) 1.42(−1)
1.46(−1) 1.20(−2) 6.52(−3) 1.19(−1) 3.64(−2) 1.78(−2)

16 1.63(−1) 2.93(−1)
1.26(−3) 2.77(−2)
1.19(−1) 7.94(−2) 1.11(−1) 1.47(−1) 8.39(−2) 9.51(−2)

Figure 1. Logarithm of the transition probability (0→ 1) as a function of the total collision energyEtot for
the scattering system H2 + He. The energy is measured in units of1

2 h̄ω. Solid line is for dynamical Lie
algebraic results, dotted line for HOEXP results, and dashed line for MOEXP results.
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Figure 2. Logarithm of the transition probability (0→ 2) as a function of the total collision energyEtot for
the scattering system H2 + He. The energy is measured in units of1

2 h̄ω. Solid line is for dynamical Lie
algebraic results, dotted line for HOEXP results, and dashed line for MOEXP results.

Figure 3. Logarithm of the transition probability (0→ 3) as a function of the total collision energyEtot for
the scattering system H2 + He. The energy is measured in units of1

2 h̄ω. Solid line is for dynamical Lie
algebraic results, dotted line for HOEXP results, and dashed line for MOEXP results.
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Figure 4. Logarithm of the transition probability (1→ 2) as a function of the total collision energyEtot for
the scattering system H2 + He. The energy is measured in units of1

2 h̄ω. Solid line is for dynamical Lie
algebraic results, dotted line for HOEXP results, and dashed line for MOEXP results.

Figure 5. Logarithm of the transition probability (1→ 3) as a function of the total collision energyEtot for
the scattering system H2 + He. The energy is measured in units of1

2 h̄ω. Solid line is for dynamical Lie
algebraic results, dotted line for HOEXP results, and dashed line for MOEXP results.
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Figure 6. Logarithm of the transition probability (2→ 3) as a function of the total collision energyEtot for
the scattering system H2 + He. The energy is measured in units of1

2 h̄ω. Solid line is for dynamical Lie
algebraic results, dotted line for HOEXP results, and dashed line for MOEXP results.

Figure 7. Logarithm of the transition probability (2→ 4) as a function of the total collision energyEtot for
the scattering system H2 + He. The energy is measured in units of1

2 h̄ω. Solid line is for dynamical Lie
algebraic results, dotted line for HOEXP results, and dashed line for MOEXP results.
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Figure 8. Logarithm of the transition probability (0→ 1) as a function of the total collision energyEtot
for the scattering system H2 + H. The energy is measured in units of1

2 h̄ω. Solid line is for dynamical Lie
algebraic results, dotted line for HOEXP results, and dashed line for MOEXP results.

Figure 9. Logarithm of the transition probability (0→ 2) as a function of the total collision energyEtot
for the scattering system H2 + H. The energy is measured in units of1

2 h̄ω. Solid line is for dynamical Lie
algebraic results, dotted line for HOEXP results, and dashed line for MOEXP results.
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Figure 10. Logarithm of the transition probability (0→ 3) as a function of the total collision energyEtot
for the scattering system H2 + H. The energy is measured in units of1

2 h̄ω. Solid line is for dynamical Lie
algebraic results, dotted line for HOEXP results, and dashed line for MOEXP results.

Figure 11. Logarithm of the transition probability (1→ 2) as a function of the total collision energyEtot
for the scattering system H2 + H. The energy is measured in units of1

2 h̄ω. Solid line is for dynamical Lie
algebraic results, dotted line for HOEXP results, and dashed line for MOEXP results.
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Figure 12. Logarithm of the transition probability (1→ 3) as a function of the total collision energyEtot
for the scattering system H2 + H. The energy is measured in units of1

2 h̄ω. Solid line is for dynamical Lie
algebraic results, dotted line for HOEXP results, and dashed line for MOEXP results.

Figure 13. Logarithm of the transition probability (2→ 3) as a function of the total collision energyEtot
for the scattering system H2 + H. The energy is measured in units of1

2 h̄ω. Solid line is for dynamical Lie
algebraic results, dotted line for HOEXP results, and dashed line for MOEXP results.
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Figure 14. Logarithm of the transition probability (2→ 4) as a function of the total collision energyEtot
for the scattering system H2 + H. The energy is measured in units of1

2 h̄ω. Solid line is for dynamical Lie
algebraic results, dotted line for HOEXP results, and dashed line for MOEXP results.
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